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Abstract
1. Species distribution models (SDMs) are an important tool for conservation and 

resource management. However, managers are often interested in derived quan-
tities such as range or area occupied, and how these are calculated can have a 
large impact.

2. Ecosystem- based management typically requires spatial information about spe-
cies distributions, which is increasingly generated from SDMs that are then pro-
cessed to identify occupied habitat. Many types of SDMs exist, but there is little 
research regarding how this model- choice affects outcomes when defining oc-
cupied habitat, in part because these models generate different types of output.

3. We fit a suite of five SDMs to data for 208 species/life stage combinations in 
three marine ecosystems while ensuring that they all estimate a ‘common cur-
rency’ of numerical abundance. We then calculate out- of- sample predictive per-
formance to weight these constituents in an ensemble SDM.

4. Results show that this approach can reduce bias arising from a priori specifica-
tion of individual SDMs resulting in a better fit to survey data (constituent SDMs 
had a median of 7% higher RMSE). The SDMs had a range of responses relative 
to the ensemble, with MaxEnt typically predicting a median 1.3% higher area 
occupied, and negative- binomial GAMs predicting 21.4% lower area occupied.

5. Two potential methods of identifying the area of occupied habitat from SDM out-
puts are compared—probability- based and cumulative density- based methods. 
We find that cumulative densities result in smaller estimates of area occupied, 
and we recommend careful consideration of how model- choice affects occupied- 
habitat estimates in spatial management.

6. Policy implications: Finally, we discuss how the patterns identified during the 5- 
year Review of Essential Fish Habitat for Alaska should be carefully considered by 
managers using SDMs to identify habitat that may be impacted by anthropogenic 
activities.
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1  |  INTRODUC TION

Species distributions and abundances are shifting worldwide, and 
quantitative tools like species distribution models (SDMs) can 
help characterize these shifts so that ecological information can 
be used in decision- making. Practitioners in several disciplines 
use SDMs to integrate ecological information within managerial 
frameworks, including fisheries management, spatial planning, 
endangered species conservation, invasive species management, 
climate impact assessment and the estimation of essential biodi-
versity indicators (Engler et al., 2004; Jetz et al., 2019; Sundblad 
et al., 2011). Numerous SDMs have been developed to address di-
verse data types, statistical situations and applications (Guisan & 
Zimmermann, 2000). The structure of these models ranges widely, 
from machine learning approaches like boosted regression trees 
(Elith et al., 2008) to generalized additive models (GAMs; Guisan 
et al., 2002) and autoregressive state- space models (Anderson 
et al., 2022; Thorson, 2019). As the options for SDMs expand, 
there have been calls for additional research examining the con-
sequences of SDM selection for prediction and decision- making 
(Brodie et al., 2020). A number of papers have compared multi-
ple SDM types based on presence- only data (Valavi et al., 2022) 
or abundance data (Waldock et al., 2022) and found that ensem-
bles of tuned SDMs or flexible machine learning methods like 
random forest tend to perform well in terms of predictive power. 
Practitioners' choices of data type, model structure and out-
puts impact the advice provided for management, as recognized 
by frameworks like the Overview, Data, Model, Assessment and 
Prediction (ODMAP) protocol (Zurell et al., 2020). While the down-
stream impacts of these modelling decisions have been quantified 
for some management scenarios using simulations (e.g. Guillera- 
Arroita et al., 2015), they have not been examined extensively in 
real- life management applications.

SDMs may be fit to a variety of data such as presence- only, 
presence- absence and counts. However, a ‘common currency’ is 
needed to efficiently compare predictions from models that utilize 
different underlying data. Cross- validation or other resampling 
methods can then be used to estimate uncertainty and select a 
model that fits the data well or provides the greatest predictive 
ability. Skill testing can also be used to assign weights to each can-
didate SDM and combine their predictions to produce an ensem-
ble. Model ensembles can help mitigate bias in individual models 
and incorporate uncertainty about model specification (Dormann 
et al., 2018). Ensemble methods are widely used and have been 
shown to produce superior results in a wide variety of SDM appli-
cations (Abrahms et al., 2019; Andersen et al., 2019), though well- 
tuned individual SDMs can sometimes outperform an ensemble 
(Hao et al., 2020).

Once probability or relative density (hereafter ‘density’) predic-
tions have been produced by SDMs, they must be post- processed 
to identify areas where a species is present, often defined as 
having a probability that the location is suitable habitat, or that 

encounter probability is above a given threshold (e.g. Holbrook 
et al., 2000; Pettorelli et al., 2010). In many cases, the spatial 
dimension of the predictions may be flattened into a single esti-
mate of total area occupied or total abundance (IUCN, 2012). The 
method used to determine the threshold for a species presence 
can have a greater effect on the size of the predicted habitat than 
the choice of model or data type (De Cubber et al., 2023). Though 
widely practiced, converting the continuous output of an SDM to 
binary or categorical output flattens the data and may result in 
biased inferences in simulations (Guillera- Arroita et al., 2015). The 
need to post- process model predictions introduces another deci-
sion point that may impose further trade- offs and complicate the 
interpretation of any results.

Applied cases have been recommended as a way to improve 
decision tools and bridge theory and practice in SDM development 
(Guisan et al., 2013). In the United States, the Magnuson- Stevens 
Fishery Conservation and Management Act (1996) requires that 
management plans account for essential fish habitat (EFH), defined 
as those waters and substrate necessary to fish for spawning, breed-
ing, feeding or growth to maturity. In most management areas, the 
EFH process involves generating maps of occupied habitat from one 
or more SDMs, which are then combined with information about 
fishing effort and other coastal activities to guide management de-
cisions (e.g. Laman et al., 2018). Thus, EFH serves as a useful case 
study for how to generate and process SDM output for management 
applications.

Here, we examine the performance of five different SDMs 
(maximum entropy (MaxEnt) and four GAM configurations) repre-
senting a variety of common SDM types that operate under dif-
ferent data constraints and assumptions, using data from Alaska 
as a case study. While other approaches such as machine learning 
methods (e.g. boosted regression trees and random forests) can 
be used as SDMs, we defined this set of constituent models by 
augmenting the set of models that have been used individually 
(and without an ensemble) to designate Essential Fish Habitat by 
the North Pacific Fisheries Management Council (NPFMC) in 2017 
(Laman et al., 2018). Progressively improving this SDM process 
follows recommendations regarding Translational Ecology (Enquist 
et al., 2017) wherein management- oriented science (such as our 
ensemble- SDM application for EFH) must result from co- produced 
developments between scientists, managers and stakeholders, 
rather than basing scientific decisions only on technical consid-
erations. We convert the outputs of the different SDMs into a 
common currency of abundance that allows for models to be com-
pared based on shared measures of predictive performance. We 
also compare the predictions of the individual SDMs to the per-
formance of a weighted ensemble derived from a combination of 
all five SDMs. We compare two methods for simplifying SDM pre-
dictions into estimates of area occupied. Finally, we share insights 
from the model development and communication process for 
practitioners seeking to implement similar ensemble approaches 
for natural resource management.
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2  |  MATERIAL S AND METHODS

2.1  |  Surveys

We used bottom trawl survey data for groundfish and inver-
tebrate species from three management regions in Alaska (the 
Gulf of Alaska [GOA]; Aleutian Islands [AI]; and northern and 
eastern Bering Sea [EBS]; Markowitz et al., 2022; von Szalay & 
Raring, 2018, 2020; Figure 1). Bottom trawl surveys are con-
ducted in the summer annually in the EBS and biennially or trien-
nially in the GOA and AI by the Groundfish Assessment Program 
of NOAA's Alaska Fisheries Science Center. These surveys use 
standardized fishing protocols to document the distribution and 
abundance of fish and invertebrate species. In all surveys, this 
study uses the original count of individuals caught, and uses the 
total area swept by the trawl net to describe effort (Alverson 
& Pereyra, 1969), which is used as an offset in the models. Fish 
lengths collected during the survey were used to partition catch 
into life stages based on literature values, as in Harris et al. 
(2023). Animal samples used in this study were provided by 
the National Oceanographic and Atmospheric Administration,  
Alaska Fisheries Science Center, Groundfish Assessment Program 
in accordance with the National Marine Fisheries Service  
Animal Care and Use Policy 04- 112 (https:// www. fishe ries. noaa. 
gov/ natio nal/ laws-  and-  polic ies/ scien ce-  and-  techn ology -  polic y-  
direc tives  ).

2.1.1  |  Environmental covariates

We included environmental covariates that we expected to influence 
species and life stage densities (Table S1). These covariates included 
habitat attributes observed on the bottom trawl survey (e.g. bottom 
temperature), modelled metrics describing the benthic environment 
(e.g. bottom depth, slope) and water movement (bottom currents), 
and structure forming invertebrates (sponge presence). All covari-
ates were assessed for collinearity in each region using variance in-
flation factors (Zuur et al., 2009), and all covariates presented here 
scored below five by this metric, indicating low or no collinearity. 
We developed 1 km2 scale environmental conditions for early juve-
nile, subadult and adult life stages. Detailed methods describing the 
development and processing of the covariate rasters are available in 
Harris et al. (2022) and the Supplemental Materials.

2.2  |  Species distribution models

We created SDMs for 208 species/life stage combinations for 
groundfish and invertebrates. When published life history studies 
were available, we apportioned trawl catches into life stages (early 
juvenile, subadult and adult). This was accomplished by computing 
the proportional contribution of each stage in a random subsample 
for fish lengths in that trawl and extending that proportion to each 
species' total catch. When life history information was not available, 

F I G U R E  1  Map of survey areas for each of the three regions in this study, showing the Aleutian Islands in orange, Eastern Bering Sea in 
green and Gulf of Alaska in purple.

https://www.fisheries.noaa.gov/national/laws-and-policies/science-and-technology-policy-directives
https://www.fisheries.noaa.gov/national/laws-and-policies/science-and-technology-policy-directives
https://www.fisheries.noaa.gov/national/laws-and-policies/science-and-technology-policy-directives
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SDMs were calculated for all lengths. Constituent SDMs and the 
SDM ensemble were compared to each other based on model fits 
and estimates of area occupied, for all the species/lifestage combi-
nations above (Figure 2).

The goal of this paper is to assess the results of many SDMs pro-
duced as part of a large regulatory process, so we focus on model 
performance rather than improving a single species map or SDM. For 
direct maps of density, encounter probability or prediction uncer-
tainty for individual species, we refer the reader to technical mem-
oranda (Harris et al., 2022; Laman et al., 2022; Pirtle et al., 2023). 
There has been a significant push to ease the interpretation of SDMs 
by using a standardized reporting format such as ODMAP (Fitzpatrick 
et al., 2021; Zurell et al., 2020). A representative example presenting 

these maps and other information using the ODMAP reporting for-
mat is available in Table S3.

A total of six methods were used to model species distributions: 
a maximum entropy model (MaxEnt), a binomial presence/absence 
generalized additive model (paGAM), a hurdle GAM (hGAM), a 
Poisson GAM (GAMP), a negative- binomial GAM (GAMnb) and an 
ensemble consisting of a weighted average these models (Figure 2). 
MaxEnt and GAMs are commonly used statistical models for charac-
terizing species distributions in marine environments (Melo- Merino 
et al., 2020). These models vary in their complexity and in their un-
derlying assumptions about density, and they were chosen for their 
flexibility with respect to the survey data. They were also selected 
for their simplicity relative to other approaches, as model structure 

F I G U R E  2  Flow chart showing the process for constructing SDM ensembles, with data types in italics. Models that did not converge or 
were otherwise not selected for the ensemble are eliminated by setting their weight equal to zero.
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and results had to be communicated to diverse stakeholders. To fa-
cilitate comparisons between models, we use numerical abundance 
as a ‘common currency’ for all model predictions. This allowed for 
direct skill testing of predictions made from different methods and 
provided a simple avenue for combining multiple predictions into an 
ensemble.

2.2.1  |  Maximum entropy models

Maximum entropy (MaxEnt) models use presence data to estimate 
habitat suitability by finding the probability distribution of maxi-
mum entropy, subject to constraints that are based on environmen-
tal conditions and information about the target distribution (Phillips 
et al., 2006). This information consists of a set of ‘features’, and the 
constraints are the empirical average of a set of sample points taken 
from the target distribution. Using the newer implementation in the 
maxnet R package (Phillips et al., 2017), MaxEnt models may be formu-
lated as the result of an inhomogeneous Poisson process using a clo-
glog link, and so the latent Poisson abundance can be approximated 
from the model outputs. In practice, this means taking the linear pre-
dictor from this model and applying the inverse- log function to pre-
dict numerical density. This approximate abundance is then re- scaled 
so that the mean of the predictions is equal to the mean of observed 
abundance. While the survey data support more complex presence- 
absence models, we include MaxEnt because it is a popular tool for 
identifying presence when data are opportunistic or low quality.

2.2.2  |  Generalized additive models

We used four types of GAMs in this study: the cloglog- linked pres-
ence/absence GAM (paGAM), a cloglog- linked presence/absence 
GAM combined with a log- linked Poisson- distributed GAM (hGAM; 
Barry & Welsh, 2002; Potts & Elith, 2006), a log- linked GAM with a 
Poisson distribution (GAMP; Hastie & Tibshirani, 1990); and a log- 
linked negative- binomial GAM (GAMnb; Zuur et al., 2009). The paGAM 
estimates abundance indirectly, using the cloglog- linked probabil-
ity to approximate a latent Poisson distribution. The hGAM, GAMPP 
and GAMnb each estimate abundance directly, and do not require any 

approximation. The abundance predictions from each of the GAMs 
were scaled so that the mean of the predictions is equal to the mean of 
observed abundance. Simpler models such as the GAMP and paGAM 
tended to converge more often than complex models like the hGAM. 
The GAMP outperformed the GAMnb in 135 out of 208 (65%) cases, 
though the difference between the two was often small. Additional 
information on each model is available in the Supplemental Materials.

2.2.3  |  Model convergence and checks

We employed a consistent framework for selecting and validating 
models across all species and life stages. Any SDM that failed to 
converge on stable parameter estimates was discarded (Figure 2). 
Furthermore, our inference involves extrapolating density to areas 
beyond the range of fitted covariates, and this extrapolation can 
be highly inaccurate when covariate responses are nonstationary 
(Rollinson et al., 2021). We guard against nonstationary responses 
by eliminating models that provide implausible estimates of den-
sity; that is, an SDM was also discarded if it produced any density 
prediction that was greater than 10 times the highest recorded 
trawl catch. Other methods can be used to identify the extent of 
extrapolation in SDMs (Guillaumot et al., 2020), but the 10 times 
threshold was sufficient to prevent implausible predictions in less 
sampled areas of the prediction grid from being included in the 
ensemble. In 189 out of 208 species/life stages all five constituent 
SDMs converged on stable parameter estimates (Table 1). In 31 
out of 208 cases, one or more SDMs failed to converge on a stable 
estimate, and the hGAM was responsible for 30 out of the 31 fail-
ures. The hGAM was also the most prone to predicting implausibly 
high abundance and was eliminated for a further 36 species/life 
stages. The MaxEnt was the second most likely to encounter prob-
lems with extreme predictions while the paGAM rarely suffered 
from this particular error.

2.2.4  |  Model fits

Model fit was assessed by conducting 10- fold cross- validation on 
all SDMs to estimate RMSE and to assess accuracy and uncertainty 

TA B L E  1  Summary of model convergence and other checks. One model was produced for each species/life stage (208 total). SDMs were 
included in the ensemble only if they passed all checks and had a weight of greater than 0.10 (Figure 2). The final column shows the average 
weight across all ensemble models, including cases where the weight was set to zero.

Model

Passed convergence check 
(i.e. algorithm produced stable 
parameter estimates)

Passed plausibility check (i.e. no 
prediction greater than 10x max 
observation)

Included in ensemble (i.e. 
greater than zero weight)

Average weight 
in ensemble

MaxEnt 207 161 154 0.20

paGAM 208 204 203 0.31

hGAM 178 142 125 0.17

GAMP 208 173 135 0.21

GAMnb 208 193 68 0.11
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(Figure 2). We used simple- random sampling to partition the data, 
given that our focus of inference is on predictive performance within 
the fixed spatial domain (Roberts et al., 2017). When multiple ver-
sions of similar models were fit (i.e. MaxEnt with different penalty 
terms; GAMP vs. GAMnb), only the version with the best RMSE was 
retained.

2.3  |  Ensemble models

An ensemble was constructed as the weighted average of five 
SDMs (MaxEnt and four GAM- type SDMs), weighted by the inverse 
squared RMSE (Figure 2), as follows:

where wi is the weight for model i, RMSEi is the cross- validated RMSE 
for model i, and m is the number of constituent models. The inverse 
of RMSE- squared is sometimes called ‘precision’, and precision- 
weighting is often the optimal weighting method (Gelman, 2014). 
Additionally, RMSE allows the weights to be based on out- of- sample 
model performance, which better represents actual prediction 
uncertainty. While the use of information theoretic weights (i.e. 
Akaike's information criterion) is widespread, Dormann et al. (2018) 
caution that the statistical justification for this method is disputed 
and that cross- validation based weights may be more reliable. The 
inclusion of poorly performing models may degrade ensemble per-
formance so if any constituent SDM received less than a 10% rela-
tive weight, it was eliminated from the ensemble and the weights of 
the remaining SDMs in the ensemble were recalculated (Figure 2).

2.4  |  Using SDMs to estimate area occupied

SDM predictions are often used to make inferences about locations 
of important habitat for a species (e.g. EFH). Total area occupied is 
commonly used in conservation, and provides a one- dimensional 
metric of status and/or risk (IUCN, 2012). Because our study com-
pares models with different data types, it is also a good occasion to 
compare two different potential methods of calculating area occu-
pied, which we refer to as the ‘probability’ method and the ‘cumula-
tive’ method.

In the ‘probability’ method, the area occupied was defined as all 
locations with an encounter probability greater than 5%. Therefore, 
the total area is given as:

where sj is the jth 1 km2 grid location, pj is the predicted encounter 
probability at location j, and n is the total number of grid locations. 

Because we employed models with different probability distributions 
and also needed to incorporate the effects of scaling, we approximated 
the encounter probability for all SDMs and the ensemble as the proba-
bility under a Poisson distribution of observing one or more fish given 
the predicted average trawl abundance. This approximation allows the 
encounter probability to be calculated in a consistent manner across 
all the SDMs used in this study and is similar to the methods used to 
identify EFH in Laman et al. (2018).

In the ‘cumulative’ method, occupied habitat is defined as all 
locations with less than 95% cumulative density. All locations are 
ranked by decreasing estimated density and the cumulative quantile 
of total density for each location is calculated. The total area is given 
as:

where sj is the jth 1 km2 grid location and dj is the predicted den-
sity at location j. The cumulative quantile function is broken into its 
parts, a cumulative sum of density ordered by descending rank (i.e. 
highest first), divided by the total sum of all predicted densities. The 
set of locations ranked below 95% can then be interpreted as the 
smallest area within which 95% of the population is estimated to 
occur. This is similar to the methods used by Echave et al. (2012) to 
describe EFH for Pacific salmon in Alaska. We compare the median 
area occupied estimates between these two methods based on en-
semble predictions.

3  |  RESULTS

3.1  |  Model fits

Ensemble models consistently achieved the best fit based on RMSE 
and were never substantially worse than the best- performing con-
stituent SDM (Figure 3). Overall, the differences between the en-
semble and each of the constituent models tended to be small: the 
GAMP had a median of 5% higher RMSE, and MaxEnt had a 9% higher 
RMSE. MaxEnt, GAMnb and hGAM had the largest median differ-
ence in RMSE relative to the ensemble, though the models showed 
largely similar performance overall. The improved fit of the ensemble 
over the constituent models was consistent across taxonomic groups 
(Table 2). A full spreadsheet of fit metrics and other information for 
all 208 species/lifestage combinations is available in the Supplemental 
Materials. The best constituent model varied by group, though the 
paGAM and GAMP tended to perform well across many situations. In 
flatfishes, the paGAM performed well, but the GAMP demonstrated 
better model fits for ‘roundfishes’, which includes many commercially 
important species. Rockfishes had similar performance using multiple 
approaches, and the paGAM and GAMP performed slightly better than 
others in chondrichthyan fishes. All the models other than the hGAM 
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showed similar performance for the crabs and octopus category. The 
more complicated hGAM and GAMnb tended to have higher RMSE 
than the other models on average. The hGAM was the most likely to 
fail to converge and hence be excluded from the ensemble, whereas 
other models appeared to be more stable both in terms of convergence 
and for producing plausible abundance estimates (Table 1).

3.2  |  Comparison of SDMs for 
estimating area occupied

According to the probability method, constituent models differed 
in their tendency to predict larger or smaller areas occupied in this 
study. The MaxEnt tended to estimate larger areas of occupied habitat 
(median 1.2% increase) and the paGAM showed no difference (<1% 
median difference), whereas the hGAM, GAMPP and GAMnb tended 
towards smaller predicted areas (14%, 15% and 21% median de-
crease relative to the ensemble, respectively), and hGAMs with poor 
fit tended to predict very small areas compared to other constituent 
models. Representative examples of this tendency are shown in the 
hGAMs for subadult Pacific ocean perch and southern Tanner crab, 

which had high RMSEs and were given zero weight in the ensemble 
(Figure 4). While the ensemble was an average of density models, the 
area occupied in these examples is calculated from the encounter 
probability (probability method) and it tended to predict larger occu-
pied habitat areas similar in size to those of the MaxEnt and paGAM. 
The maps of subadult Pacific ocean perch and tanner crab in the EBS 
are examples where the ensemble heavily weighted the larger proba-
bility predictions from the MaxEnt and paGAM, compared to the more 
spatially restricted estimates from the other models (Figure 4). The 
maps of adult rex sole show that this is not always the case; here the 
ensemble predicts a smaller area occupied than predicted by MaxEnt 
and similar to the remaining constituent models.

3.3  |  Comparison of area occupied definitions on 
predicted habitat

Results also demonstrate that the method (‘probability’ vs. ‘cumu-
lative’) used to identify occupied habitat influences the estimate 
of area occupied. Identifying occupied habitat based on the ‘prob-
ability’ method produced larger estimates of occupied habitat areas 

F I G U R E  3  Frequency distribution of log- transformed root- mean- square- error (RMSE) scores across species/life histories from the five 
constituent models and relative to the RMSE of the ensemble. The ensemble score is indicated by the black dotted line at zero. The red 
dashed line shows the median score for that model. Values greater than zero mean that the ensemble model had a lower RMSE (better 
performance) than the constituent.
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than the ‘cumulative’ method in most cases (Figure 5). Overall, the 
probability method resulted in a median of 58% larger estimates 
of area occupied, with some exceptions (e.g. subadult Dover sole; 
Figure 5). This pattern varied among species and life stages; 14% of 
species/life stages had a larger predicted occupied habitat when the 
cumulative method was used.

The pattern of larger predicted occupied habitat with the probabil-
ity method was consistent across the three major regions in this study 
and applied to a wide variety of species and life stages. However, the 
14% of cases where the occupied habitat was higher using the cumula-
tive method were predominantly species/life stages with low density in 
trawl catches (skates, and some less common rockfish and flatfish spe-
cies). For example, subadult Dover sole are infrequently encountered 
in the EBS surveys and are rarely found in large numbers. The proba-
bility method estimated that the occupied habitat for subadult Dover 
sole consisted of a narrow band along the continental slope, whereas 
the cumulative method includes more of the continental slope and a 
larger area in the south and east of the Bering Sea (Figure 6).

Conversely, the cumulative method tended to produce smaller 
estimates of area occupied for species/life stages with a patchy 
distribution (low occurrence in trawls, but high average density). 
Shortspine thornyhead are found in only 5% of EBS survey sta-
tions, but sometimes reach very high density. Using the cumula-
tive method, the adult shortspine thornyhead habitat area was 
reduced by approximately 75% relative to the probability method 
and their predicted occupied habitat was restricted to the deeper 
portions of the Bering slope (Figures 5 and 6). Adult walleye pollock 
demonstrate the median response, with an occupied habitat area 

approximately one- third smaller according to the cumulative method 
(Figure 6). Walleye pollock are very common in the EBS (present in 
86% of tows), and while it is sometimes caught in large numbers, its 
distribution is less patchy than that of shortspine thornyhead.

4  |  DISCUSSION

We set out to evaluate how model structure and choice affect con-
clusions about species distribution. We compared the performance 
of five SDMs on 208 species/life stage combinations from three 
geographic regions. The MaxEnt model was informative for distribu-
tions of less common species, like some rockfishes whose patchy 
distribution and association with rocky areas makes them more diffi-
cult to sample with bottom trawl gear, which fits the original purpose 
of MaxEnt models to identify species distributions from disparate or 
opportunistic data sources (Elith et al., 2011; Phillips & Dudík, 2008). 
However, GAMs typically had lower RMSE and were less likely to 
predict encounters outside of its observed range compared to 
MaxEnt. The hGAM was the most complex among the GAMs, but 
it sometimes failed to converge and often had a higher RMSE than 
the other GAMs. The GAMP fit a wide variety of stock/lifestage 
combinations and typically had a lower RMSE than the more com-
plex GAMnb, even though the GAMnb is theoretically capable of ac-
counting for the overdispersion. Evaluating model performance with 
out- of- sample RMSE may disfavour more complex models like the 
GAMnb and hGAM because of their greater potential for overfitting. 
However, the median RMSE (Table 2) does not capture that these 

TA B L E  2  Summary of model fit metrics for each species group across regions. The performance of each SDM is summarized as the 
median RMSE across all species and life stages in its group. Only species/life stages where all five constituent models converged successfully 
were included (hence the smaller total than in Table 1).

Model RMSE Model RMSE

Flatfish (Order Pleuronectiformes) 
N = 63

MaxEnt 14.70 Sharks & Skates (Class Chondrichthyes) N = 30 MaxEnt 14.70

paGAM 14.03 paGAM 14.03

hGAM 21.72 hGAM 21.72

GAMP 14.92 GAMP 14.92

GAMnb 16.98 GAMnb 16.98

ensemble 11.30 ensemble 11.30

Roundfish (Families Gadidae, 
Hexagrammidae, Anaplopomatidae) 
N = 28

MaxEnt 58.09 Crabs & Octopus, N = 8 MaxEnt 58.09

paGAM 58.02 paGAM 58.02

hGAM 88.39 hGAM 88.39

GAMP 57.95 GAMP 57.95

GAMnb 58.05 GAMnb 58.05

ensemble 56.57 ensemble 56.57

Rockfish (Family Scorpaenidae) N = 48 MaxEnt 11.37 Total, N = 177 MaxEnt 11.37

paGAM 11.25 paGAM 11.25

hGAM 19.74 hGAM 19.74

GAMP 11.12 GAMP 11.12

GAMnb 13.50 GAMnb 13.50

ensemble 9.55 ensemble 9.55



    |  9HARRIS et al.

F I G U R E  4  Comparison of occupied habitat area using the probability method for the five models relative to the ensemble. The left 
column shows the frequency distribution of the log ratio of occupied habitat with the dotted line at zero representing the ensemble. 
The maps show adult rex sole (rex), subadult Pacific ocean perch (POP) and Tanner crab (tan) area occupied in the Bering Sea from the 
distribution, with the blue shaded area with a black outline representing the occupied habitat area for that model and the red shaded area 
with a bright red outline representing the predicted area occupied in the ensemble.
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models show excellent performance in some particular species and 
were useful within the ensemble framework. In this study, the en-
semble approach mitigated some of the weaknesses of these mod-
els, providing better model fits and more stable estimates of area 
occupied.

In this study, the two SDMs that are primarily designed around 
presence- only or presence- absence data (MaxEnt and paGAM) 
tended to predict larger areas occupied than the others. This is in 
large part because these models approximate the abundance and 
must be scaled in order to make accurate predictions of numerical 
densities. A large scaling factor changes the relationship between 
predictions of encounter probability and density and seems to in-
flate probability estimates. While all the models in this study were 
scaled, the scale factors for the hGAM, GAMP and GAMnb were 
typically close to one. In a probability- based approach to defining 
occupied habitat, this often leads to larger than expected occupied 
habitat areas. Our results are in agreements with previous studies 
that found that ensemble models tend to outperform individual 
models (Seni et al., 2010).

The probability method that we introduce here, in which occupied 
habitat is defined as areas with a >5% encounter probability, often 
results in a larger estimate of occupied habitat compared to the cu-
mulative method. This method has a number of potential drawbacks, 
including that it does not make full use of the density predictions 
and requires a probability threshold to be specified outside of the 

model. By contrast, the cumulative method is more straightforward 
and can be interpreted as the area that contains 95% percent of the 
estimated abundance or biomass. While the user must still choose 
which quantiles of density are relevant for describing key habitat, 
those quantiles are defined when model predictions are made and 
will not change afterwards. In abstract terms, the two methods will 
differ most for species that have a patchy distribution (i.e. species 
for which most of the total density is found in a small area). Maps 
produced using the cumulative method will emphasize those areas 
of high density, whereas maps using the probability method will tend 
to emphasize the maximum range or geographic extent.

SDM predictions are used in management to describe important 
habitat for marine species (like EFH), project species habitat- related 
distribution shifts under climate change scenarios (e.g. Rooper 
et al., 2021), to obtain indices of abundance and age composition 
from monitoring data (O'Leary et al., 2020), and to develop stock- 
specific metrics and status indicators that can be used in stock as-
sessments (Shotwell et al., 2022). The results of this study highlight 
the importance of keeping management goals in mind when select-
ing SDM methods and interpreting their results. The ‘probability’ 
method is consistent with methods used previously for identifying 
EFH (Laman et al., 2018). However, this approach generally resulted 
in a larger estimate of area occupied, which was less precise and 
harder to communicate to managers and stakeholders in an intui-
tive way. Density predictions comparable to the ‘cumulative’ method 
have been used to quantify whether a range of suitable habitats has 
shifted, or to characterize certain areas as being important to popu-
lation productivity (Fredston et al., 2021; Rosenberg et al., 2000). In 
many of these examples, density quantiles are used to obtain basic 
information about range shifts or to identify important areas for 
marine planning (Melo- Merino et al., 2020). The relative utility of 
these two methods should be dictated by the desired management 
outcomes and the ecology of the species. A method that estimates a 
larger area occupied may be less precise but more robust to seasonal 
shifts in distributions, a relevant concern for survey data that are 
collected in one season. However, if the chief concern is to delineate 
a species' core habitat area as opposed to its peripheral habitat, the 
more precise areas identified using the cumulative method will be 
more useful.

While the ensemble approach described here is useful for pre-
dicting large- scale patterns across several species, we recommend 
that future work explores SDMs that can handle dynamic environ-
mental covariates (e.g. Barnes et al., 2022) and the mechanistic 
links between environmental and biological processes (Thorson 
et al., 2021), that incorporate life history processes including life 
stage- specific habitat needs and that provide more accurate pre-
dictions for species with unique distributions (e.g. a strip of habi-
tat within an ecosystem). Here, we focused on GAMs because they 
are familiar to stakeholders and are simpler and more easily inter-
preted than some of the more complex SDMs. MaxEnt models were 
included here because of their prevalence in habitat analyses for 
decision- making about rare species, but may soon be replaced by 
other models that can better account for differences in catchability 

F I G U R E  5  Histogram showing the difference (log ratio) of the 
cumulative method (occupied habitat is the smallest area that 
contains 95% of the total abundance) compared to the probability 
method (occupied habitat based on areas with >5% encounter 
probability) for identifying occupied habitat, for all regions 
combined. A value greater than 0 indicates that the cumulative 
method produced a larger estimate of the habitat area than the 
cumulative method for a given species/life stage. The red dashed 
line shows the median value of 0.55. The abbreviation ‘ssth’ 
represents shortspine thornyhead.
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(Yackulic et al., 2013). For situations where data are limited in gen-
eral, and for the Alaska EFH process in particular, machine learning 
approaches such as random forest or spatio- temporal models may 
be considered in the future and could readily be included in an en-
semble framework like the one described here.

Stakeholder understanding of confidence in scientific informa-
tion is critical to stakeholder support and the outcomes of natural 
resource management (e.g. Turner et al., 2016). We have shown that 
the identification of occupied habitat is affected by a priori choice 
of correlative models and mapping methods. This ensemble- based 

F I G U R E  6  Maps showing the difference in predicted area occupied between the probability method (left column; occupied habitat based 
on areas with >5% encounter probability) and the cumulative method (right column; occupied habitat is the smallest area that contains 95% 
of the total abundance) for three species/life stages.
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approach to modelling species distributions has several benefits re-
gardless of how the end product is used: ensemble models are more 
adaptable (allowing the addition of new SDMs as needed) and more 
stable over time (i.e. because model weights change more slowly 
with the inclusion of new data than a binary model- selection cri-
terion). When regularly reviewing quantitative maps of occupied 
habitat, moving from using single SDMs to SDM ensembles in pro-
cess should reduce the magnitude of the change in area occupied 
attributable to modelling methods development, so that changes 
in area occupied due to the environment or other impacts may be 
more easily detected. The approach described here represents an 
improvement over previously used methods for describing EFH for 
groundfish and invertebrates in Alaska (Laman et al., 2018).
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SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.
Supporting Information Table S1. Covariates used for species 
distribution models. The ‘response function used in GAMs’ column 
describes the function specified to transform the covariate when 
estimating the linear predictor, where ‘2D smooth’ refers to a Duchon 
spline (Duchon, 1977) with a 1st order smoothing penalty, and ‘1D 
smooth’ may refer to either a univariate thin- plate spline with a 2nd- 
order smoothing penalty or a cubic regression spline (Wood, 2003). Data 
source describes the method that was used to obtain each covariate.
Supporting information S2. An ODMAP protocol (Fitzpatrick et al., 
2021) for adult Rex Sole in the Gulf of Alaska. While this project 
produced 208 SDM ensembles, this one is provided as an example to 
show the approach that was used throughout. Detailed information 
for all 208 models can be obtained from Harris et al. (2022), Laman 
et al. (2022) and Pirtle et al. (2023).
Supporting Information Table S3. Summary statistics from 208 
SDM ensembles used in this project. The ‘Region’ column indicates 
if the model pertained to the Aleutian Islands (AI), Eastern Bering 
Sea (EBS) or Gulf of Alaska (GOA). The ‘Species’ and ‘Lifestage’ 
columns give information about the organism being modelled. The 
‘Model’ column shows each of the model types explored, and the 
‘Converged’ and ‘Plausible’ columns state where the model passed 
various checks and was included in the ensemble. The ‘Weight’ 
column provides the fractional contribution of each constituent 
model to the ensemble. ‘Scale’ shows the scaling factor used for that 
model. ‘RMSE’ is the root- mean- squared error for each constituent 
or the ensemble. The columns ‘Probability Area’ and ‘Cumulative 
Area’ show the predicted area of occupied habitat for that model or 
ensemble for using the probability method or cumulative method as 
described in the Materials and Methods section.
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